管理科学与工程系

刘佳明

博士,副教授,硕士生导师

个人简历

刘佳明,管理学博士,副教授,硕士生导师。曾在新加坡国立大学访学。在《Journal of Forecasting》、《Expert Systems with Applications》、《Management Decision》、《运筹与管理》等国内外期刊发表多篇论文。主持国家自然科学基金青年项目、北京市自然科学基金面上项目、北京市社会科学基金青年项目等

研究方向

预测理论与方法、数据挖掘与数据分析、信用风险评估、智能融资担保

教育经历

2015.03 - 2018.10,哈尔滨工业大学,经济与管理学院,管理学博士

2011.09 - 2018.02,新加坡国立大学,商学院,短期访学(机器学习预测方向)

2011.09 - 2014.05,中国航天科技集团公司第710研究所,工学硕士

2007.09 - 2011.06,大连理工大学,软件学院,工学学士

学术成果

[1]Jiaming Liu*, Xuemei Zhang*, Haitao Xiong. Credit risk prediction based on causal machine learning: Bayesian network learning, default Inference, and interpretation [J]. Journal of Forecasting, 2024, ahead-of-print.

[2]Jiaming Liu, Xiaoya Tang, Haibin Liu*. Enhanced forecasting of online car-hailing demand using an improved empirical mode decomposition with long short-term memory neural network [J]. Transportation Letters-The International Journal of Transportation Research, 2024, ahead-of-print.

[3]Jiaming Liu, Jiajia Liu*, Chong Wu, Shouyang Wang. Enhancing credit risk prediction based on ensemble tree-based feature transformation and logistic regression [J]. Journal of Forecasting, 2023, ahead-of-print.

[4]Jiaming Liu*, Chengzhang Li, Peng Ouyang, Jiajia Liu, Chong Wu. Interpreting the prediction results of the tree-based gradient boosting models for financial distress prediction with an explainable machine learning approach [J]. Journal of Forecasting, 2023, 42(5): 1112-1137.

[5]Jiaming Liu*, Sicheng Zhang, Haoyue Fan. A two-stage hybrid credit risk prediction model using XGBoost and graph-based deep neural network [J]. Expert Systems with Applications, 2022, 195: 116624.

[6]Xiang Li, Haoyue Fan, Jiaming Liu*, Qifeng Xun. Staff Scheduling in Blood Collection Problems [J]. Annals of Operations Research, 2022, 316: 365-400.

[7]Jiaming Liu, Liuan Wang*, Linan Zhang, Zeming Zhang, Sicheng Zhang. Predictive analytics for blood glucose concentration: An empirical study using tree-based ensemble approach [J]. Library Hi Tech, 2020, 38(4): 835-858.

[8]Jiaming Liu, Lina Ding, Xiaoyu Guan*, Jiao Gui, Jianbin Xu. Comparative analysis of forecasting for air cargo volume: Statistical techniques vs. machine learning [J]. Journal of Data, Information and Management, 2020, 2(4): 243-255.

[9]Jiaming Liu, Chong Wu*. Hybridizing kernel-based fuzzy c-means with hierarchical selective ensemble model for business failure prediction [J]. Journal of Forecasting, 2019, 38(2): 92-105.

[10]Jiaming Liu, Chong Wu*, Yongli Li*. Improving financial distress prediction using financial network-based information and GA-based gradient boosting method [J]. Computational Economics, 2019, 53(2): 851-872.

[11]吴冲, 刘佳明*, 郭志达. 基于改进粒子群算法的模糊聚类-概率神经网络模型的企业财务危机预警模型研究 [J]. 运筹与管理, 2018, 27(2): 106-114+132.

[12]Jiaming Liu, Chong Wu*, Tianyi Su. The reference effect in newsvendor model with strategic customers [J]. Management Decision, 2017, 55(5): 1006-1021.

[13]Jiaming Liu, Chong Wu*. A gradient boosting decision tree approach for firm failure prediction: An empirical model evaluation study of Chinese listed companies [J]. The Journal of Risk Model Validation, 2017, 11(2): 43-64.

[14]Jiaming Liu, Chong Wu*. Dynamic forecasting of financial distress: the hybrid use of incremental bagging and genetic algorithm—empirical study of Chinese listed corporations [J]. Risk Management, 2017, 19(1): 32-52.

[15]Peng Ouyang*, Jiaming Liu, Xiaofei Zhang. Achieving popularity to attract more patients via free knowledge sharing in the online health community [J]. Aslib Journal of Information Management, 2023, ahead-of-print.

[16]Yanting Zheng, Xin Luan*, Xin Lu, Jiaming Liu. A new view of risk contagion by decomposition of dependence structure: Empirical analysis of Sino-US stock markets [J]. International Review of Financial Analysis, 2023, 90:102920.

[17]Sicheng Zhang, Xiang Li*, Yuan Xing, Jiaming Liu, Jinlin Peng, Dongmei Li. Optimising the flight turnaround schedules: An improved sliding time windows approach based on MILP and CP models [J]. Computers & Operations Research, 2024, 161:106433.

[18]Haitao Xiong, Yuchen Zhou, Jiaming Liu, Yuanyuan Cai*. Class-dependent and Cross-modal Memory Network Considering Sentimental Features for Video-based Captioning [J]. Frontiers in Psychology, 2023, 14:1124369.

[19]Xiang Li*, Jiao Gui, Jiaming Liu. Data-driven traffic congestion patterns analysis: A case of Beijing [J]. Journal of Ambient Intelligence and Humanized Computing, 2022.

[20]Hongguan Ma*, Jiaming Liu, Xiande Zhao, Bowen Zhang. A study of highway logistics transportation network structure in China: From the perspective of complex network [J]. Journal of Data, Information and Management, 2022, 4(2): 89-105.

[21]Shengnan Tian, Xiang Li*, Jiaming Liu, Hongguang Ma, Haitai Yu. A shortturning strategy to alleviate bus bunching [J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 13(1): 117-128.

[22]Sicheng Zhang, Fangcheng Tang*, Xiang Li, Jiaming Liu, Bowen Zhang. A hybrid multi-objective approach for real-time flexible production scheduling and rescheduling under dynamic environment in Industry 4.0 context [J]. Computers & Operations Research, 2021, 132: 105267.

[23]Dong Zhang*, Chong Wu, Jiaming Liu. Ranking products with online reviews: A novel method based on hesitant fuzzy set and sentiment word framework [J]. Journal of the Operational Research Society, 2020, 71(3): 528-542.

[24]Chuan Zhang, Zhe Liu*, Jiaming Liu. Least absolute deviations for uncertain multivariate regression model [J]. International Journal of General Systems, 2020, 49(4): 449-465.

[25]Yongli Li, Sihan Li, Chuang Wei*, Jiaming Liu. How students’ friendship network affects their GPA ranking [J]. Information Technology & People, 2019, 33(2): 535-553.

[26]Yongli Li, Chong Wu*, Jiaming Liu, Peng Luo. A Combination Prediction Model of Stock Composite Index Based on Artificial Intelligent Methods and Multi-Agent Simulation [J]. International Journal of Computational Intelligence Systems, 2014, 7(5): 853-864.

会议论文

[1] Chong Wu, Jiaming Liu*. A combination use of bagging and random subspace with memory mechanism for dynamic financial distress prediction [C]. 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bali, Indonesia, 2016-12.

专利&软著

[1]刘佳明, 刘佳佳, 范皓玥. 一种基于集成树特征提取和Logistic回归的个人信用风险评估方法 [P].

[2]刘佳明, 李想, 范皓玥. 一种基于集成树的呼吸机假阳性报警信号识别方法及系统 [P].

[3]范皓玥, 刘佳明, 李想, 刘克. 一种献血中心人员的智能调度方法及智能调度系统 [P].

[4]张思成, 张博文, 李想, 刘佳明, 马红光. 一种柔性装配作业车间调度的混合优化方法 [P].

[5]李想, 桂佼, 马红光, 刘佳明, 于海涛. 一种数据驱动的城市交通流模式识别与实时预测预警方法 [P].

[6]电商仓储助手库存管控系统 V1.0. 软件著作权登记号:2023SR0313033

[7]物流配送管理系统 V1.0. 软件著作权登记号:2023SR0362203

[8]城市交通流速模式分析与实时预测系统[简称:TARPS] V1.0. 软件著作权登记号:2021SR0179611

科研项目

[1]国家自然科学基金青年项目,考虑企业关联和时序信息的财务危机预测串并联集成建模研究. 国家自然科学基金青年基金项目,2020-2022,负责人

[2]北京市自然科学基金面上项目,基于改进深度神经网络的企业财务困境预测可解释性模型研究,2023-2025,负责人

[3]北京市社会科学基金青年项目,社会网络视角下京津冀物流基地空间布局分析及功能联动机制研究,2019-2021,负责

[4]中国博士后科学基金第66批面上资助项目,基于多分类器自适应集成的财务危机动态预测模型研究,2019-2020,负责人

[5]北京市教育科学“十四五”规划课题,基于教学反馈评论数据的高校在线平台课程教学效果评价研究,2022-2024,负责

[6]北京市教育委员会科研计划一般项目,基于深度神经网络的信用风险评估方法及评估结果可解释性研究,2022-2024,负责人

教学工作

本科生: 数据挖掘与商务智能,数据可视化

研究生: 定量分析:模型与方法

奖励及其他

奖励荣誉

2022年:betway88官网手机版“蓝桥杯”大赛优秀指导教师

2021年:betway88官网手机版2020-2021学年优秀班主任

2018年:哈尔滨工业大学黄梯云创新研究二等奖

2017年:哈尔滨工业大学博士生国家奖学金

2014年:中国航天科技集团公司优秀毕业研究生

指导学生获奖

2023年:第十四届中国大学生服务外包创新创业大赛“合合信息杯”北部区域赛三等奖

2022年:第八届“互联网+”大学生创新创业大赛高教主赛道北京市三等奖

2022年:第八届“互联网+”大学生创新创业大赛“青年红色筑梦之旅”赛道北京市三等奖

2022年:第十三届“蓝桥杯”全国软件和信息技术专业人才大赛北京市三等奖

社会兼职

中国“双法”研究会智能决策与博弈分会理事

中国“双法”研究会船海分会理事

北京系统工程学会理事

Information Sciences; Electronic Commerce Research and Applications;Information Processing & Management; Kybernetes; 运筹与管理等期刊审稿人